IGCS 2023 Abstracts: Oral Presentations (Plenary Sessions)

Oral abstract presentations are included in the below sessions. The sessions will be recorded for on-demand viewing via the IGCS 360 Educational Portal.

Plenary 01: Oral Abstract Presentations Sunday, November 5, 2023, 9:00 – 10:30 AM Auditorium

Plenary 03: Oral Abstract Presentations – Ovarian Cancer Tuesday, November 7, 2023, 8:30 – 9:30 AM Auditorium

PO001 / #381

Topic: AS03. Cervical Cancer

IS MINIMALLY INVASIVE SURGERY SAFE FOR CERVICAL CANCER PATIENTS WITH A DIAMETER OF LESS THAN 2 CM? (MISAFE): GYNECOLOGIC ONCOLOGY RESEARCH INVESTIGATORS COLLBORATION STUDY (GORILLA-1003)

PLENARY 01: ORAL ABSTRACT PRESENTATIONS

<u>Tae-Wook Kong</u>¹, Jeeyeon Kim¹, Joo-Hyuk Son¹, A Jin Lee², Eun Jung Yang², Seung-Hyuk Shim², Nam Kyeong Kim³, Yeorae Kim³, Dong Hoon Suh⁴, Dong Won Hwang⁵, Soo Jin Park⁵, Hee Seung Kim⁵, Yoo Young Lee⁶, Ji Geun Yoo⁷, Sung Jong Lee⁸, Suk-Joon Chang¹

¹Ajou University Medical Center, Obstetrics And Gynecology, Suwon, Korea, Republic of, ²Konkuk University Hospital, Obstetrics And Gynecology, Seoul, Korea, Republic of, ³Seoul National University Bundang Hospital, Department Of Obstetrics And Gynecology, Seongnam, Korea, Republic of, ⁴Seoul National University Bundang Hospital, Department Of Obstetrics And Gynecology, Seongnam-Si, Korea, Republic of, ⁵Seoul National University Hospital, Obstetrics And Gynecology, Seoul, Korea, Republic of, ⁶Samsung Medical Center, Obstetrics And Gynecology, Seoul, Korea, Republic of, ⁷Daejeon St. Mary's hospital, Obstetrics And Gynecology, Daejeon, Korea, Republic of, ⁸Seoul St. Mary's Hospital, Obstetrics And Gynecology, Seoul, Korea, Republic of

Introduction: To identify clinicopathologic factors associated with disease recurrence for patients with 2018 FIGO stage IA with lymphovascular invasion (LVSI) to IB1 cervical cancer treated with minimally invasive surgery (MIS).

Methods: A total of 722 early-stage cervical cancer patients between January 2010 and February 2021 were identified. All possible clinicopathologic factors related to disease recurrence were analyzed. Disease-free survival (DFS) and overall survival (OS) rates were estimated using the Kaplan-Meier method. To determine prognostic factors for DFS, a Cox proportional hazard regression model was used.

Results: Of 722 patients, 49 (6.8%) showed disease recurrence (37 pelvis, 1 para-aortic lymph node, and 11 peritoneum). Five-year DFS and OS rates were 90.7% and 98.1%, respectively. In multivariate analysis, risk factors associated with disease recurrence were residual disease in the remaining cervix (OR, 4.693; 95% CI, 3.719 - 5.667; p = 0.002), intracorporeal colpotomy (OR, 2.960; 95% CI, 1.703 - 3.161; p = 0.017), and positive resection margin (OR, 3.415; 95% CI, 2.351 - 4.479; p = 0.024). The non-conization group had a higher percentage of stage IB1 (77.4% vs. 64.6%; p = 0.004) and larger tumor (16 mm vs. 10 mm; p < 0.001) than the conization group. Intracorporeal colpotomy and residual disease in the remaining cervix were independent variables associated with disease recurrence in patients undergoing MIS following conization.

Conclusion/Implications: During MIS, early-stage cervical cancer patients with tumors less than 2 cm can be vulnerable to peritoneal recurrences. Preoperative conization itself may not lower the disease recurrence in early-stage cervical cancer patients undergoing MIS.

PO002 / #156

Topic: AS03. Cervical Cancer

EFFICACY AND SAFETY RESULTS FROM SKYSCRAPER-04: AN OPEN-LABEL RANDOMIZED PHASE 2 TRIAL OF TIRAGOLUMAB PLUS ATEZOLIZUMAB FOR PD-L1-POSITIVE RECURRENT CERVICAL CANCER

PLENARY 01: ORAL ABSTRACT PRESENTATIONS

<u>Ritu Salani</u>¹, Bradley Monk², Yong-Man Kim³, Sharad Ghamande⁴, Shaundra Hall⁵, Domenica Lorusso⁶, Lisa Barraclough⁷, Lucy Gilbert⁸, Adrián Guzmán Ramírez⁹, Chien-Hsing Lu¹⁰, Dominique Berton¹¹, Nicoletta Colombo¹², Youyou Hu¹³, Venkatesh Krishnan¹⁴, Yuning Feng¹⁵, Nicole Kim¹⁶, Marcela Castro¹⁶, Yvonne Lin¹⁶, Mary Mccormack¹⁷

¹David Geffen School of Medicine, UCLA, Gynecology, Los Angeles, United States of America, ²HonorHealth University of Arizona College of Medicine and Creighton University School of Medicine, Division Of Gynecologic Oncology, Phoenix, United States of America, ³Gynecologic Cancer Center, Asan Cancer Institute, Asan Medical Center, University of Ulsan, Dept. Of Obstetrics And Gynecology, Seoul, Korea, Republic of, ⁴Georgia Cancer Center, Augusta University, Gynecologic Oncology, Augusta, United States of America, ⁵National Cervical Cancer Coalition, Patient Advocacy, Glendale, United States of America, 6Fondazione Policlinico Gemelli and Catholic University of the Sacred Heart, Division Of Gynecologic Oncology, Rome, Italy, ⁷The Christie NHS Foundation Trust, -, Manchester, United Kingdom, ⁸McGill University Health Centre, Department Of Gynecologic Oncology, Montreal, Canada, ⁹Instituto de Investigación en Ciencias Médicas (ICIMED),, Oncology, San José, Costa Rica, ¹⁰Taichung Veterans General Hospital, Department Of Obstetrics And Gynecology, Taichung, Taiwan, ¹¹Institut de Cancérologie de l'Ouest, -, Saint Herblain, France, ¹²University of Milan-Bicocca and Gynecologic Oncology Program, European Institute of Oncology IRCCS, Department Of Medicine And Surgery, Milan, Italy, ¹³F. Hoffmann-La Roche Ltd, Data Science, Basel, Switzerland, ¹⁴Genentech, Oncology Biomarker Development, South San Francisco, United States of America, ¹⁵Genentech, Product Development Safety, South San Francisco, United States of America, ¹⁶Genentech, Product Development Oncology, South San Francisco, United States of America, ¹⁷University College London Hospitals, Department Of Oncology, London, United Kingdom

Introduction: Immune checkpoint inhibitors are active in advanced cervical cancer. SKYSCRAPER-04 (NCT04300647) evaluated dual blockade with tiragolumab (anti-TIGIT) and atezolizumab (anti-PD-L1) (tira+atezo), an approach hypothesized to overcome immune suppression and restore immune response.

Methods: Eligible patients had measurable (per investigator assessment) PD-L1-positive recurrent/persistent cervical cancer after 1-2 prior chemotherapy lines (including ≥1 platinum-based regimen). Patients were randomized 3:1 to atezolizumab 1200mg with or without tiragolumab 600mg q3w until unacceptable toxicity/progression. Crossover to tira+atezo was permitted after unequivocal progression during single-agent atezolizumab. Stratification factors were ECOG PS, prior (chemo)radiotherapy, and disease status. The primary endpoint was independent review committee (IRC)-assessed confirmed objective response rate (ORR) per RECIST v1.1 in all treated patients randomized to tira+atezo. An ORR ≥21% (1-sample z-test p≤0.0245) was required to demonstrate statistically significant improvement versus a 14.6% historical reference [Chung, 2019]. Secondary endpoints included IRC-assessed progression-free survival, overall survival, and pre-crossover safety.

Results: Prior therapy in 171 treated patients included bevacizumab in 35%, (chemo)radiotherapy in 80%, and paclitaxel in 93%. IRC-assessed ORRs were 19.0% with tira+atezo and 15.6% with atezo alone (Table). In post hoc exploratory analyses of patients with measurable disease per IRC assessment, ORRs were 21.6% (tira+atezo) and 15.8% (atezo). There were no new safety signals. In a post hoc

follow-up analysis, 15% of patients remained on treatment and 15/45 initially randomized to atezo had crossed over to tira+atezo.

Table. Outcomes for pts with PD-L1-positive (TAP ≥5%) recurrent cervical cancer receiving					
tiragolumab + atezolizumab or atezolizumab alone					
EndpointTira+atezo (n=126)Atezo (n=45)					
Primary analysis (data cutoff Dec 8, 2021; median follow-up 8.5 months)					
IRC-assessed ORR, % (95% CI)	19.0 (12.6–27.0)	15.6 (6.5–29.5)			
PD-L1 _{high} subgroup (n=105)	25.0 (15.8–36.3)	20.7 (8.0–39.7)			
PD-L1 _{low} subgroup (n=66)	10.0 (3.3–21.8)	6.3 (0.2–30.2)			
IRC-determined measurable disease	21.6 (14.4–30.4)	15.8 (6.0–31.3)			
subgroup (n=149)*					
Median IRC-assessed PFS, months (95% CI)	2.8 (1.7–4.1)	1.9 (1.5–3.0)			
Grade 3/4 adverse events, %	44	31			
Grade ≥3 adverse events of special interest, %	8	11			
Updated OS analysis (data cutoff Jun 30, 2022; median follow-up 10.4 months)					
Median OS, months (95% CI)	11.1 (9.6–14.5)	10.6 (6.9–13.8)			
CI = confidence interval; OS = overall survival; PD-L1 _{high} = TAP ≥10%; PD-L1 _{low} = TAP 5–					
<10%; PFS = progression-free survival; TAP = PD-L1 tumor area positivity by SP263.					
*Post hoc exploratory analysis.					

Conclusion/Implications: The ORR with tira+atezo was numerically but not significantly higher than the historical benchmark. This is the first reported phase 2 cervical cancer trial targeting TIGIT and PD-L1 concurrently.

PO003 / #269

Topic: AS11. Ovarian Cancer

IGNITE: A PHASE II SIGNAL-SEEKING TRIAL OF ADAVOSERTIB TARGETING RECURRENT HIGH GRADE SEROUS OVARIAN CANCER WITH CYCLIN E1 OVER-EXPRESSION WITH AND WITHOUT GENE AMPLIFICATION

PLENARY 01: ORAL ABSTRACT PRESENTATIONS

<u>George Au-Yeung</u>¹, Mathias Bressel², Owen Prall³, Petra Opar², John Andrews⁴, Sally Mongta⁵, Yeh Chen Lee⁶, Bo Gao⁷, Tarek Meniawy⁸, Sally Baron-Hay⁹, Allison Black¹⁰, Ganessan Kichenadasse¹¹, Sumitra Ananda¹², Peter Fox¹³, David Bowtell¹⁴, Linda Mileshkin¹ ¹Peter MacCallum Cancer Centre, Medical Oncology, Melbourne, Australia, ²Peter MacCallum Cancer Centre, Biostatistics And Clinical Trials, Melbourne, Australia, ³Peter MacCallum Cancer Centre, Pathology, Melbourne, Australia, ⁴Australia New Zealand Gynaecological Oncology Group, Research, Camperdown, Australia, ⁵Peter MacCallum Cancer Centre, Parkville Cancer Clinical Trials Unit, Melbourne, Australia, ⁶Royal Hospital for Women, Gynaecologic Oncology Department, Sydney, Australia, ⁷Westmead and Blacktown Hospital, Medical Oncology, Westmead, Australia, ⁸Sir Charles Gairdner Hospital, Medical Oncology, Nedlands, Australia, ⁹Royal North Shore Hospital, Medical Oncology, St Leonards, Australia, ¹⁰Royal Hobart Hospital, Medical Oncology, Hobart, Australia, ¹¹Flinders Medical Centre, Medical Oncology, Bedford Park, Australia, ¹²Sunshine Hospital, Medical Oncology, St Albans, Australia, ¹³Orange Health Service, Medical Oncology, Orange, Australia, ¹⁴Peter MacCallum Cancer Centre, Research Division, Melbourne, Australia

Introduction: Cyclin E1 amplification and over-expression is associated with platinum resistance in high grade serous ovarian cancer (HGSC), and may predict response to WEE1 inhibition. Adavosertib, a WEE1 inhibitor, has activity in unselected women with recurrent ovarian and endometrial cancer. We aimed to evaluate the efficacy of adavosertib in women with recurrent platinum resistant HGSC (PR-HGSC) with cyclin E1 over-expression, with and without gene amplification.

Methods: IGNITE is a multicentre, Phase 2 trial with 2 cohorts of PR-HGSC patients. Cohort 1 were cyclin E1 amplified (\geq 8 copies by FISH) and over-expressed (H-score>50), and Cohort 2 were non-amplified. Adavosertib 300mg PO was given daily on days 1-5 and 8-12 q21-day cycle (dose was reduced to 200mg after n=71 due to safety concerns). The primary endpoint was clinical benefit (CB) defined as no progression for \geq 18 weeks. Here we present the 18-week CB rate (CBR) and overall response rate (ORR), with data cut-off of Apr-2023.

Results: From Jan-2020 to Oct-2022, 80 patients (Cohort 1 n=21; Cohort 2 n=59) were accrued. Median age was 64 years (range 42-84), 83% had \geq 2 prior chemotherapy lines. For Cohort 1, ORR=38% and CBR=53%. For Cohort 2, ORR=45% and CBR=48%. Treatment related adverse events occurred in 78 patients (97%). Dose reduction was required in 36 (45%) patients, mostly for neutropenia or diarrhoea. Four patients (5%) died from treatment (sepsis n=3; thrombocytopenia n=1).

Response	Response evaluable patients (n = 21)	RECIST measurable patients (n = 20)
CR	0	0
PR	7 (33%)	7 (35%)
CA125 50% Response	1 (5%)	0
SD	7 (33%)	7 (35%)
No CA-125 response and no PD	0	0
PD	6 (29%)	6 (30%)
OR (CR/PR/CA-125 50% response) CB (No PD>18 weeks)	8/21 (38% [18, 62]) 10/19ª (53% [29, 76])	7/20 (35% [15, 59]) 10/19 (53% [29, 76])

Table 1: Response and clinical benefit (amplified – all patients)

^aTwo patients were not considered evaluable for clinical benefit (discontinued treatment due to toxicity n=1; withdrew consent prior to week 18 n=1)

Response	Response evaluable patients (n = 58)	RECIST measurable patients (n = 49)		
CR	3 (5%)	3 (6%)		
PR	18 (31%)	18 (37%)		
CA125 50% Response	5 (9%)	0		
SD	16 (28%)	16 (33%)		
No CA-125 response and no PD	4 (7%)	0		
PD	12 (21%)	12 (24%)		
OR (CR/PR/CA-125 50% response)	26/58 (45% [32, 58])	21/49 (43% [29, 58])		
CB (No PD>18 weeks)	26/54ª (48% [34, 62])	23/46 (50% [35, 65])		
^a Four patients were considered not evaluable for clinical benefit (Withdrew consent				

Table 2: Response and clinical benefit (non-amplified – all patients)

^aFour patients were considered not evaluable for clinical benefit (Withdrew consent n=2; missing data n=1; discontinued treatment prior to week 18 per SMC recommendation, no further tumour assessment n=1)

Conclusion/Implications: Adavosertib demonstrated activity in biomarker selected patients with PR-HGSC. Study accrual was halted early due to concern regarding rates of myelotoxicity.

PO008 / #393

Topic: AS11. Ovarian Cancer

TIMED ADOPTIVE T-CELL THERAPY DURING CHEMOTHERAPY IN PLATINUM SENSITIVE RECURRENT EPITHELIAL OVARIAN CANCER, THE OVACURE PHASE I/II TRIAL.

PLENARY 03: ORAL ABSTRACT PRESENTATIONS - OVARIAN CANCER

<u>Judith Kroep</u>¹, Linda De Bruin¹, Lien Van Der Minne¹, Inge Roozen¹, Pauline Meij², Sjoerd Van Der Burg³, Els Verdegaal³

¹Leiden University Medical Center (LUMC), Medical Oncology, Leiden, Netherlands, ²Leiden University Medical Center (LUMC), Clinical Pharmacology & Toxicology, Leiden, Netherlands, ³Leiden University Medical Center (LUMC) and Oncode Institute, Medical Oncology, Leiden, Netherlands

Introduction: T-cell infiltration correlates with epithelial ovarian cancer (EOC) survival, suggesting that EOC may be sensitive to ACT with autologous TIL. Carboplatin-paclitaxel (CP) chemotherapy lowers tumor induced immune-suppressive myeloid-cells, thereby creating a window-of-opportunity for TILs. IFNα may support the TIL.

Methods: This phase I/II OVACURE trial (NCT04072263) studied the feasibility and safety of TIL during CP +/- IFN α in patients with recurrent platinum-sensitive EOC. Sixteen patients were enrolled. Patients received CP iv q3 weeks, 6x and TIL iv 2 weeks after the 2nd, 3rd and 4th CP +/- IFN α 12 weeks around the TIL infusion. CP +/- IFN α were used for lymphodepletion instead of IL-2. Patients who received 3 TIL cycles were evaluable. Secondary, signs of activity, immunomodulation, and T-cell reactivity were studied.

Results: Fourteen patients were evaluable. Median age: 63 years (29-77), 13 HGSOC and 1 LGMOC. TIL could successfully be cultured for all patients. Addition of TIL during CP did not add toxicity, while additional IFN α resulted in grade 3 thrombocytopenia in the first 2 patients. Therefore, it was decided to continue treatment without IFN α . CP reduced plasma IL-6 levels and circulating myeloid-cell numbers. The optimal myeloid/lymphocyte ratio reduction was obtained 1-2 weeks after the 2nd CP. Interestingly, the platinum-free interval (PFI) exceeded the previous PFI after similar CP in 2 patients, including an ongoing PFI which increased from 8 to currently 43+ months.

Conclusion/Implications: Combined treatment with CP chemotherapy and timed TIL did not increase toxicity and may result in clinical benefit for patients with EOC.

PO009 / #424

Topic: AS11. Ovarian Cancer

INNOVATIVE ACADEMIC HOMOLOGOUS RECOMBINATION DEFICIENCY TESTS AVAILABLE IN ADVANCED OVARIAN CANCER: THE EUROPEAN ENGOT INITIATIVE

PLENARY 03: ORAL ABSTRACT PRESENTATIONS - OVARIAN CANCER

<u>Eric Pujade-Lauraine</u>¹, Yann Christinat², Maurizio D'Incalci³, Philip C. Schouten⁴, Adrien Buisson⁵, Lukas C. Heukamp⁶, Liselore Loverix⁷, Celine Callens⁸, Raphael Leman⁹, Thomas A. Mckee², Sergio Marchini¹⁰, Eric Hahnen¹¹, Pierre Saintigny¹², Elena Ioana Braicu¹³, Toon Van Gorp¹⁴, Elisa Yaniz-Galende¹⁵, Marc-Henri Stern¹⁶, Dominique Vaur⁹, Isabelle Ray-Coquard¹⁷

¹ARCAGY-GINECO, And Gineco, Paris, France, ²Geneva University Hospitals and SAKK, Diagnostic Department, Division Of Clinical Pathology, Geneva, Switzerland, ³Humanitas University Laboratory of Cancer Pharmacology, Humanitas Research Hospital Humanitas University and MANGO, Department Of Biomedical Science, Pieve Emanuele (MI), Italy, ⁴Netherlands Cancer Institute and AGO, Department Of Molecular Pathology, Amsterdam, Netherlands, ⁵Centre Léon Bérard and GINECO, Department Of Biopathology, Lyon, France, ⁶Institute for Hämatopathologie Hamburg and NOGGO, Department Of Molecular Pathology, Solid Tumors, Hamburg, Germany, ⁷University Hospitals Leuven Leuven Cancer Institute, KULeuven and BGOG, Division Of Gynaecological Oncology, Leuven, Belgium, ⁸Institut Curie and Paris Sciences Lettres University, Service De Génétique, Paris, France, ⁹Centre François Baclesse and GINECO, Laboratoire De Biologie Et De Génétique Du Cancer, Fhu-q4 Génomique-u125-plateforme Sesame, Caen, France, ¹⁰Humanitas Research Hospital Humanitas University Campus and MANGO, Laboratory Of Cancer Pharmacology, Pieve Emanuele (MI), Italy, ¹¹Center for Integrated Oncology (CIO), University of Cologne, Faculty of Medicine and University Hospital Cologne and AGO, Center For Familial Breast And Ovarian Cancer, Cologne, Germany, ¹²Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286 and GINECO, Department Of Medical Oncology, Centre Léon Bérard, Centre De Recherche En Cancérologie De Lyon, Lyon, France, ¹³Charité, Universitätsmedizin Berlin and NOGGO, Corporate Member Of Freie Universität Berlin, Humboldt-universität Zu Berlin, And Berlin Institute Of Health. Department Of Gynecology, With Center For Oncological Surgery, Campus Virchow Clinic, Berlin, Germany, ¹⁴University Hospitals Leuven Leuven Cancer Institute, KULeuven, Division Of Gynaecological Oncology, Leuven, Belgium, ¹⁵University Paris Saclay and GINECO, Gustave Roussy Et Insermu981, Villeiuif, France, ¹⁶Institut Curie, D.r.u.m. Team, Inserm U830, Paris, France, ¹⁷Centre Léon Bérard and GUINECO, 28 Prom. Léa Et Napoléon Bullukian, & University Claude Bernard Lyon, Lyon, France

Introduction: Recently the PAOLA-1/ENGOT-ov25 phase-3 study (Ray-Coquard ESMO-2022) showed that the addition of olaparib maintenance to 1st-line platinum-based therapy and bevacizumab improved survival of advanced ovarian cancer (AOC) patients with HRD positive tumors independently of BRCA status (Myriad myChoice test). The aim of the European ENGOT initiative was to evaluate various academic HRD assays on PAOLA-1 tumor samples.

Methods: The novel HRD tests were initially assessed on 85 samples from PAOLA-1 BRCA-wild-type patients and results were correlated with Myriad test. Subsequently, >350 PAOLA-1 samples selected on the basis of tumor DNA availability were tested. Statistics were performed independently (v26.0-SPSS). The ability of each test to predict 1st-line olaparib maintenance efficacy versus placebo was evaluated on PAOLA-1 patient progression-free survival according to HRD/BRCA status.

Results: From 12/2019 to 09/2022 a total of 8 European academic laboratories representing 6 countries completed the clinical validation process on the PAOLA-1 samples. Despite the variety of methodological approaches and some differences in the distribution of HRD status, all of tests were clinically validated (Table 1) and did not differ significantly from Myriad test results. Progression-free survival hazard ratio

between olaparib and placebo arms depending on the assay was between 0.30 and 0.50 for HRD positive patients and between 0.88 and 1.15 for HRD negative patients.

Table 1. HRD clinically validated tests from 8 academic laboratories and the reference myChoice Myriad HRD test

HRD assay	Affiliation	Technical sum-up	HRDpos ¹ /total No (%)	HRDpos ¹ & BRCAwt ² 0.35 <hr of="" pfs<0.55<="" th=""/>
ІСН	Humanitas University, Milano	SCNA ³ and SNV ⁴ (378 genes)	228/399 (57.1)	yes
Geneva	Geneva University Hospitals	Oncoscan SNP ⁵ assay	252/469 (53.7)	yes
ShallowHRDv2	Institut Curie, Paris	Low coverage WGS ⁶	228/449 (50.7)	yes
GIScar	Centre F. Baclesse, Caen	Instability score: 127 gene panel	258/469 (55.0)	yes
Leuven HRD	Catholic University, Leuven	NGS ⁷ SNP + gene panel	254/468 (54)	yes
Glinger	Centre Léon Berard, Lyon	Low coverage WGS + 28 gene panel	266/469 (56.7)	yes
BRCA-like	Köln University and Netherlands Cancer Institute	Low coverage WGS	298/469 (63.5)	yes
NOGGO GIS	Berlin La Charité and Hamburg University	NGS SNP 57 gene panel	188/383 (49.1)	yes
MyChoice HRD CDx	Myriad Genetics	BRCA1/2 and GIS ⁸	242/469 (51.6)	yes

¹HRDpos: Test HRD positive; ²BRCAwt: BRCA wild type; ³SCNA: Somatic Copy Number Alteration; ⁴SNV: Single Nucleotide Variant; ⁵SNP: Single Nucleotide Polymorphism; ⁶WGS: Whole Genome Sequencing; ⁷NGS: Next-Generation Sequencing; ⁸GIS : Genomic Instability Score

Conclusion/Implications: The ENGOT HRD initiative is a unique collaboration of European academic laboratories involved in gynaecology oncology translational research. A total of 8 innovative HRD tests achieved a clinical validation from AOC tumor samples of the phase 3 PAOLA-1 study.

PO010 / #673

Topic: AS11. Ovarian Cancer

A SINGLE-ARM, PHASE II STUDY OF NIRAPARIB AND BEVACIZUMAB MAINTENANCE IN PATIENTS WITH PLATINUM-SENSITIVE, RECURRENT OVARIAN CANCER PREVIOUSLY TREATED WITH A PARP INHIBITOR (KGOG 3056/NIRVANA-R)

PLENARY 03: ORAL ABSTRACT PRESENTATIONS - OVARIAN CANCER

<u>Hyun-Woong Cho</u>¹, Jeong-Yeol Park², Byoung Gie Kim³, Jae-Weon Kim⁴, Myong Cheol Lim⁵, Dae Hoon Jeong⁶, Jung-Yun Lee⁷

¹Korea University Guro Hospital, Obstetrics & Gynecology, Seoul, Korea, Republic of, ²Asan Medical Center, Department Of Obstetrics And Gynecology, Seoul, Korea, Republic of, ³Samsung Medical Center, Sungkyunkwan University School of Medicine, Obgyn, Seoul, Korea, Republic of, ⁴Seoul National University, Obstetrics And Gynecology, Seoul, Korea, Republic of, ⁵Center for Gynecologic Cancer, National Cancer Center, Department Of Obstetrics And Gynecology, Goyang, Korea, Republic of, ⁶Department of Obstetrics and Gynecology, Inje University Busan Paik Hospital, Obgyn, Pusan, Korea, Republic of, ⁷Yonsei University Health System, Obstetrics And Gynecology, Seoul, Korea, Republic of

Introduction: The aim of NIRVANA-R trial is to investigate the efficacy of niraparib in combination with bevacizumab as a maintenance therapy in platinum-sensitive ovarian cancer patients who were previously treated with a PARPi. Here, we report the results from first stage of NIRVANA-R.

Methods: This study included patients with platinum-sensitive recurrent ovarian cancer who received at least 2 previous courses of platinum- containing therapy and had been treated with a PARPi. Patients who had responded to the last platinum regimen were eligible to participate in this study. Forty-four patients will be recruited. All enrolled patients are treated with niraparib and bevacizumab for maintenance therapy until disease progression. The primary endpoint of the study is 6-month progression-free survival (PFS) rate. A Simon 2-stage design was utilized. Target accrual was 22 patients in the first stage; ≥10 patients with progressive disease within 6 months was required to proceed to second stage.

Results: Thirty three of 44 planned patients have been enrolled. Median age was () years old, high grade serous (). Median prior lines of therapy (); prior bevacizumab (). Of the 22 patients from 1st stage, 8 had progressived disease within 6 months. The efficacy boundary to proceed to 2nd stage was met. Data will be updated at the late breaking abstract deadline.

Conclusion/Implications: Our findings indicate encouraging safety and activity of niraparib + bevacizumab as a maintenance therapy in platinum-sensitive ovarian cancer patients who were previously treated with a PARPi. Complete interim analysis results will be reported.

PO013 / #435

Topic: AS11. Ovarian Cancer

ROLE OF LYMPHADENECTOMY (LND) IN ADVANCED OVARIAN CANCER (OC) –A SUBGROUP ANALYSIS OF THE PATIENTS EXCLUDED FROM THE ORIGINAL LION TRIAL (THE CHARITÉ COHORT)

PLENARY 03: ORAL ABSTRACT PRESENTATIONS - OVARIAN CANCER

<u>Robert Armbrust</u>¹, Christina Fotopoulou², Radoslaw Chekerov¹, Carmen Beteta¹, Elena Ioana Braicu¹, Zelal Muallem¹, Klaus Pietzner¹, Philipp Harter³, Jalid Sehouli¹ ¹Charité, Universitätsmedizin Berlin and NOGGO, Corporate Member Of Freie Universität Berlin, Humboldt-universität Zu Berlin, And Berlin Institute Of Health. Department Of Gynecology, With Center For Oncological Surgery, Campus Virchow Clinic, Berlin, Germany, ²Imperial College London, Surgery And Cancer, London, United Kingdom, ³Klinikum Essen Mitte, Department Of Gynecology And Gynecologic Oncology, Essen, Germany

Introduction: The results of the prospective randomized phase-III LION-trial failed to demonstrate a therapeutic benefit from LND in tumor-free operated advanced OC patients with macroscopically normal appearing LN. Patients were randomized intraoperatively with exclusion of those thought by the surgeon not to be fully operable or with suspicious/bulky LN by inspection or palpation. We wished to address the surgical and survival outcomes of this excluded group in a single center.

Methods: This is a monocentric analysis in a tertiary ESGO-accredited center of excellence for OC. A total of 202 patients were screened for the original study; 120 were excluded, and 82 included in the final LION analysis. Excluded cases were retrospectively analyzed according to the same endpoints (PFS and OS) of the LION-trial with a subsequent comparison analysis.

Results: Overall, 195 patients were included in the present analysis. Rate of CR was with 45% significantly lower in the intraoperatively excluded patients vs the tumor-free operated patients of the original LION analysis. This had a significantly negative impact on OS and PFS. Only 60% of the screening failed patients had histologically positive LN in final pathology. There was no significant difference in PFS or OS between the tumor-free operated screening failed patients versus those randomized, regardless of their histological LN-status and whether an LND was performed.

Conclusion/Implications: Our findings confirm the lack of therapeutic LND in advanced OC even in patients with suspicious LN. Non-tumor-free operated patients had worse outcome. We demonstrated that intraoperative LN evaluation by the surgeon is subjective and inaccurate.

PO014 / #364

Topic: AS11. Ovarian Cancer

LAPAROSCOPIC CYTOREDUCTION AFTER NEOADJUVANT CHEMOTHERAPY (LANCE): FEASIBILITY PHASE OF A RANDOMIZED TRIAL

PLENARY 03: ORAL ABSTRACT PRESENTATIONS - OVARIAN CANCER

<u>J. Alejandro Rauh-Hain</u>¹, Alexander Melamed², Rene Pareja³, Abdulrahman Sinno⁴, Leah Mcnally⁵, Neil Horowitz⁶, Pierandrea De Iaco⁷, Chad Michener⁸, Taymaa May⁹, Luc Van Lonkhuijzen¹⁰, Maria Iniesta¹, Tina Suki¹, Ying Yuan¹, Robert Coleman¹¹, Pedro Ramirez¹², Anna Fagotti¹³ ¹MD Anderson Cancer Center, Gynecologic Oncology And Reproductive Medicine, Houston, United States of America, ²Massachusetts General Hospital, Obstetrics And Gynecology, Boston, United States of America, ³Hospital General de Medellín, Gynecologic Oncology, Medellin, Colombia, ⁴Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Obstetrics And Gynecology, Miami, United States of America, ⁵Duke University, Obstetrics And Gynecology, Durham, United States of America, ⁶Dana Farber Cancer Center, Gynecologic Oncology, Boston, United States of America, ⁷University of Bologna, Obstetrics And Gynecology, Bologna, Italy, ⁸Cleveland Clinic, Obstetrics And Gynecology, Cleveland, United States of America, ⁹Princess Margaret Cancer Center, Gynecologic Oncology, Toronto, Canada, ¹⁰Amsterdam University Medical Center, Gynecologic Oncology, Amsterdam, Netherlands, ¹¹US Oncology, Texas Oncology, Houston, United States of America, ¹²Methodist Hospital, Obstetrics And Gynecology, Houston, United States of America, ¹³Fondazione Policlinico A. Gemelli, Gynecologic Oncology, Rome, Italy

Introduction: In patients who respond to neoadjuvant chemotherapy (NACT) for advanced-stage epithelial ovarian cancer (EOC), minimally invasive surgery (MIS) may reduce the morbidity of surgery. Studies evaluating oncologic outcomes of minimally invasive interval cytoreductive surgery are largely retrospective.

Methods: LANCE is a prospective, multicenter, international, randomized trial evaluating whether MIS is non-inferior to laparotomy in terms of disease-free survival, among patients with stage IIIC and IV EOC with normalization of CA125 after 3-4 cycles of NACT. The planned 100 patients were enrolled in a leadin phase to assess the feasibility of the trial with respect to cross-over among those assigned to MIS, complete gross resection, and recruitment. Patients were randomized (1:1) to undergo open or MIS (laparoscopic or robotic) surgery. Surgeons applied maximal effort to resect all visible tumor, conversion to open surgery was performed when necessary to attain complete resection.

Results: From September 2020-February 2023, 100 patients were randomized (51 open, 49 MIS). The mean age was 62 years, 67% had stage IIIC, and 54% received 3 cycles of NACT. Six patients randomized to MIS (12.2%;95%CI: 4.6-24.8%) underwent conversion to open surgery. Surgeons achieved complete gross resection in 87.5% (95%CI: 74.8-95.3%) and 83% (95%CI: 69.2-92.4%) of patients assigned to MIS and open (p=0.6). There were three (6.3%) intraoperative complications in the MIS group and three (6.4%) in the open group. Two patients (4.1%) in the MIS group experienced grade 4-5 adverse events following

surgery.

Table 1: Demographic and clinical characteristics (n = 100)

Characteristic	0 (n	OPEN (n = 51)		Minimally Invasive (n = 49)	
	N	%	N	%	
Age (Years)					
Mean (SD)	63	63 (10.2) 61.4 (9.5)		(9.5)	
Ethnicity					
Hispanic or Latino	14	29.1	18	36.7	
Not Hispanic or Latino	34	70.8	31	63.3	
Missing or unknown	1		0		
Race					
White or Caucasian	46	90.2	44	89.8	
Black or African American	3	5.9	0	0	
Asian	1	1.9	3	6.1	
Other	1	1.9	2	4.1	
Disease primary site					
Ovary	40	78.4	43	87.8	
Fallopian tube	2	3.9	0	0	
Peritoneum	9	17.6	6	12.2	
BRCA status					
Negative	25	75.8	25	73.5	
BRCA1	5	15.1	3	8.8	
BRCA2	3	9.1	6	17.6	
Unknown/Missing	18		15		
Stage					
IIIC	34	66.7	33	67.3	
IV	17	33.3	16	32.6	
HIPEC					
No	37	78.7	39	81.2	
Yes	10	21.3	9	18.7	
Missing or unknown	4		1		
Residual disease					
R0	39	83	42	87.5	
< 5mm	3	6.4	3	6.2	
>5 - 10 mm	3	6.4	3	6.2	
> 1cm	2	4.3	0	0	
Missing or unknown	4		1		
Intraoperative Complication					
No Complications	44	93.6	45	93.7	
EBL > 2000 ml	0	0	1	2.1	
Vascular Injury	0	0	1	2.1	
Organ Injury	3	6.4	1	2.1	
Missing or unknown	4		1		

Conclusion/Implications: Evaluation of MIS interval cytoreductive surgery is feasible, enrollment is ongoing in a definitive trial.